Negative Regulation of the Novel norpAP24 Suppressor, diehard4, in the Endo-lysosomal Trafficking Underlies Photoreceptor Cell Degeneration
نویسندگان
چکیده
Rhodopsin has been used as a prototype system to investigate G protein-coupled receptor (GPCR) internalization and endocytic sorting mechanisms. Failure of rhodopsin recycling upon light activation results in various degenerative retinal diseases. Accumulation of internalized rhodopsin in late endosomes and the impairment of its lysosomal degradation are associated with unregulated cell death that occurs in dystrophies. However, the molecular basis of rhodopsin accumulation remains elusive. We found that the novel norpA(P24) suppressor, diehard4, is responsible for the inability of endo-lysosomal rhodopsin trafficking and retinal degeneration in Drosophila models of retinal dystrophies. We found that diehard4 encodes Osiris 21. Loss of its function suppresses retinal degeneration in norpA(P24), rdgC(306), and trp(1), but not in rdgB(2), suggesting a common cause of photoreceptor death. In addition, the loss of Osiris 21 function shifts the membrane balance between late endosomes and lysosomes as evidenced by smaller late endosomes and the proliferation of lysosomal compartments, thus facilitating the degradation of endocytosed rhodopsin. Our results demonstrate the existence of negative regulation in vesicular traffic between endosomes and lysosomes. We anticipate that the identification of additional components and an in-depth description of this specific molecular machinery will aid in therapeutic interventions of various retinal dystrophies and GPCR-related human diseases.
منابع مشابه
Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet-Biedl syndrome.
Compartmentalization and polarized protein trafficking are essential for many cellular functions. The photoreceptor outer segment (OS) is a sensory compartment specialized for phototransduction, and it shares many features with primary cilia. As expected, mutations disrupting protein trafficking to cilia often disrupt protein trafficking to the OS and cause photoreceptor degeneration. Bardet-Bi...
متن کاملBLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development
Notch signaling plays a crucial role in controling the proliferation and differentiation of stem and progenitor cells during embryogenesis or organogenesis, but its regulation is incompletely understood. BLOS2, encoded by the Bloc1s2 gene, is a shared subunit of two lysosomal trafficking complexes, biogenesis of lysosome-related organelles complex-1 (BLOC-1) and BLOC-1-related complex (BORC). B...
متن کاملTPC1 Has Two Variant Isoforms, and Their Removal Has Different Effects on Endo-Lysosomal Functions Compared to Loss of TPC2
Organelle ion homeostasis within the endo-lysosomal system is critical for physiological functions. Two-pore channels (TPCs) are cation channels that reside in endo-lysosomal organelles, and overexpression results in endo-lysosomal trafficking defects. However, the impact of a lack of TPC expression on endo-lysosomal trafficking is unknown. Here, we characterize Tpcn1 expression in two transgen...
متن کاملY682G Mutation of Amyloid Precursor Protein Promotes Endo-Lysosomal Dysfunction by Disrupting APP–SorLA Interaction
The intracellular transport and localization of amyloid precursor protein (APP) are critical determinants of APP processing and β-amyloid peptide production, thus crucially important for the pathophysiology of Alzheimer's disease (AD). Notably, the C-terminal Y682ENPTY687 domain of APP binds to specific adaptors controlling APP trafficking and sorting in neurons. Mutation on the Y682 residue to...
متن کاملThe FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes.
TMEM106B is a major risk factor for frontotemporal lobar degeneration with TDP-43 pathology. TMEM106B localizes to lysosomes, but its function remains unclear. We show that TMEM106B knockdown in primary neurons affects lysosomal trafficking and blunts dendritic arborization. We identify microtubule-associated protein 6 (MAP6) as novel interacting protein for TMEM106B. MAP6 over-expression inhib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013